Home / Эндокринология / Метаболизм костной ткани

Метаболизм костной ткани

Кость — структура, подвергающаяся непрерывным перестройкам на протяжении всей жизни. Прочность костей обеспечивает функционирование опорно-двигательного аппарата. Кроме того, костная ткань служит резервуаром, поддерживающим гомеостаз кальция, магния, фосфата, натрия и других ионов. Кости пронизаны большим количеством сосудов; костный кровоток составляет до 10% системного.

Костное вещество

Свойства костной ткани определяются межклеточными компонентами — минеральным веществом и органическим матриксом.

На долю коллагена I типа приходится 90—95% всего белка органического матрикса.

К неколлагеновым белкам матрикса относятся: белки плазмы (альбумин и фетуин), белки, содержащие остатки γ-карбоксиглутаминовой кислоты (остеокальцин и γ-карбоксиглутамат-содержащий белок матрикса), гликопротеид остеонектин, фосфопротеид остеопонтин, сиалопротеиды, тромбоспондин и другие, менее изученные белки.

Некоторые из этих белков участвуют в минерализации матрикса. Минеральное вещество костной ткани состоит из частично кристаллизованного гидроксиапатита, в котором молярное отношение кальция к фосфату меньше, чем в чистом гидроксиапатите (формула чистого гидроксиапатита Са10(РО4)6(ОН)2).

В кости, особенно в ее поверхностном слое, имеются и другие ионы. Минерализация начинается с образования отдельных «островков» в промежутках между концами нитей коллагена. Процесс минерализации зависит от образования органического матрикса. Такая двухкомпонентная структура из минерального вещества и органического матрикса обеспечивает высокую механическую прочность кости.

За образование кости отвечают остеобласты — клетки мезенхимного происхождения, синтезирующие белки органического матрикса. Для остеобластов характерны:

1) определенные локализация и морфология;

2) присутствие костного изофермента ЩФ;

3) наличие рецепторов ПТГ и 1,25(OH)2D3;

4) способность синтезировать белки матрикса, такие, как коллаген I типа, остеокальцин и остеопонтин.

Минерализация новосинтезированного матрикса начинается сразу после его секреции (первичная минерализация) и продолжается в течение нескольких недель (вторичная минерализация). Остеобласт, окруженный минерализующимся матриксом, превращается в остеоцит, который сохраняет связь с другими клетками через систему канальцев.

Резорбция костной ткани осуществляется остеокластами — многоядерными клетками, образованными слиянием моноцитов.

В остеокластах обнаружены:

1) Н+-АТФаза и карбоангидраза II, обеспечивающие закисление среды в зоне резорбции;

2) тирозинкиназа Src, продукт онкогена SRC, а также ее субстрат р80/85;

3) устойчивая к тартрату кислая фосфатаза;

4) мембранные рецепторы кальцитонина;

5) Nа+,К+-АТФаза, сходная с аналогичным почечным ферментом;

6) Сl/HCO3-обменник, относящийся к семейству белков полосы 3. Остеокласты прикрепляются к белкам костного матрикса, например остеопонтину, с помощью аγβз-интегрина. При этом каждый остеокласт образует на поверхности кости зону прикрепления в виде кольца; цитоплазма остеокласта в области прикрепления светлая (светлая зона), и в ней содержатся сократительные белки.

Внутри этого кольца мембрана остеокласта образует так называемую гофрированную каемку; в ограниченном пространстве между гофрированной каемкой и костью и создается кислая среда, происходит растворение минерального вещества, а затем под действием кислых гидролаз рассасывается органический матрикс. В результате разрушительной деятельности остеокластов в кости образуются как бы разъеденные полости — гаушиповы, или резорбционные лакуны. В этих лакунах и располагаются остеокласты.

Описано много гуморальных регуляторов образования остеобластов и остеокластов из клеток-предшественников, а также функции дифференцированных клеток. Из них наиболее известны ИЛ-6, ИЛ-11 и колониестимулирующие факторы.

В костной ткани содержится много факторов роста. На функцию остеобластов действуют: трансформирующий фактор роста р типов I и II, кислый и основный факторы роста фибробластов, тромбоцитарный фактор роста, ИФР-I и ИФР-II. В перестройке кости участвуют, по-видимому, остеоглицин и ряд белков — регуляторов морфогенеза кости. Функцию остеокластов и процесс резорбции кости регулируют: ИЛ-1, ФНО, интерферон у и колониестимулирующие факторы.

В ряде случаев регуляция функции остеокластов осуществляется опосредованно, через остеобласты или фибробласты стромы костного мозга, — так действует, в частности, ПТГ, рецепторов к которому в зрелых остеокластах нет. Через взаимодействие с рецепторами в клетках-предшественниках l,25(OH)2D3 стимулирует их дифференцировку в моноциты и затем в остеокласты.

Некоторые цитокины, например ИЛ-1 и трансформирующий фактор роста а, индуцируют локальное образование простагландинов и других цитокинов, таких, как ИЛ-6 и колониестимулирующие факторы. Так называемые факторы активации остеокластов, как теперь очевидно, — это группа цитокинов, в том числе ИЛ-1, ФНОα и β, а также, возможно, другие вещества.

У плода и ребенка кость образуется путем замещения обызвествленного хряща (хрящевой остеогенез) или формируется непосредственно из мезенхимы (перепончатый остеогенез).

В новообразованной костной ткани (у детей, а также у взрослых при быстром росте, например при образовании костной мозоли) относительно много клеток и мало матрикса, для нее характерно беспорядочное расположение толстых переплетающихся пучков коллагеновых нитей (ретикулофиброзная кость).

В зрелой кости пучки коллагеновых нитей организованы в параллельные или концентрические пластинки (пластинчатая кость). В длинных костях костные пластинки, расположенные концентрически вокруг

кровеносных сосудов, формируют остеоны (гаверсовы системы). Толщина кости увеличивается, если скорость остеогенеза в надкостнице выше скорости резорбции на эндостальной поверхности. Удлинение костей происходит за счет пролиферации клеток эпифизарного хряща и последующего хрящевого остеогенеза.

У взрослых эпифизы зарастают, удлинение костей и хрящевой остеогенез прекращаются; некоторая активность клеток сохраняется только в суставном хряще. Однако и у взрослых продолжается перестройка как остеонов, так и губчатых костей. Новообразованная костная ткань отличается гладкой поверхностью, поглощает тетрациклин, имеет относительно низкое содержание минерального вещества и покрыта активными остеобластами. Толщина нового неминерализованного органического матрикса (остеоида) составляет около 12 мкм. Для определения скорости образования костной ткани больному дважды с некоторым интервалом дают тетрациклин, а затем измеряют расстояние между флюоресцирующими слоями на срезах костного биоптата.

Зоны резорбции отличаются неровной поверхностью и присутствием остеокластов. Резорбция предшествует остеогенезу, она протекает более интенсивно, но не столь долго, как последний. Если активная резорбция у взрослых происходит приблизительно на 4% поверхности губчатой кости (например, гребня подвздошной кости), то неминерализованным органическим матриксом покрыто 10—15% поверхности костных балок.

Изотопные исследования показывают, что ежегодно замещается до 18% всего кальция костей. Таким образом, в костной ткани происходит активный обмен веществ, требующий хорошего кровоснабжения. Перестройка костей каким-то образом зависит от механической нагрузки. Кроме того, костная ткань служит резервуаром неорганических ионов, например кальция, играющего важную роль во многих физиологических процессах.

Реакция костной ткани на повреждение (переломы, инфекцию, нарушение кровоснабжения, метастазы) весьма ограничена. Процесс замещения мертвой костной ткани на новую сопровождается прорастанием новых кровеносных сосудов в пораженную область.

При значительном нарушении структуры ткани, например при переломе со смещением костных отломков или их патологической подвижностью, стромальные клетки-предшественники дифференцируются не в остеобласты, а в клетки, формирующие соединительную ткань и хрящ.

При хорошем совмещении и фиксации костных отломков срастание осуществляется преимущественно за счет остеогенеза, и рубцовой деформации не происходит. Перестройка кости зависит от механической нагрузки, которая каким-то образом влияет на биологическую активность ткани.

На границе растущей опухоли с костью происходит резорбция последней. Прогибающие деформации стимулируют остеогенез на вогнутой и резорбцию на выпуклой поверхностях, что способствует сохранению механической прочности.

Даже при таком деструктивном заболевании, как болезнь Педжета, перестройка кости зависит от механических сил. Таким образом, пластичность костной ткани определяется взаимодействием клеток друг с другом и с внешней средой.

Механизмы остеогенеза и резорбции кости

Остеогенез — это упорядоченный процесс образования и минерализации органического матрикса кости. В состав кости входят кальций и фосфат, поэтому скорость минерализации зависит от концентрации этих ионов в плазме и внеклеточной жидкости.

В искусственных условиях для кристаллизации гидроксиапатита достаточно тех концентраций кальция и фосфата, которые имеются в плазме. Концентрация ионов в очагах минерализации неизвестна, очевидно только, что она регулируется остеобластами и остеоцитами.

Коллаген различного происхождения способствует возникновению центров кристаллизации, и минерализация начинается в определенных участках упорядоченной структуры матрикса — промежутках между молекулами коллагена. Степень и характер минерализации, по-видимому, зависят от организации коллагена.

Первичная структура коллагенов I типа из кожи и из кости практически одинакова, однако эти белки претерпевают различные постгрансляционные изменения и поэтому различаются по степени гидроксилирования, гликозилирования, по типу, числу и распределению межмолекулярных поперечных связей. Кроме того, размер промежутков в упорядоченной структуре матрикса больше в минерализованном коллагене кости и дентина, чем в неминерализованном коллагене, например, сухожилий.

Важность коллагенового матрикса для нормального развития кости доказывается тем, что замена единичных аминокислот в спиральной части α1 — или α2-цепей коллагена I типа (в результате мутаций генов COL1A1 или COL1A2 соответственно) приводит к выраженному нарушению структуры кости, что проявляется как несовершенный остеогенез.

Неколлагеновые белки — остеокальцин, остеонектин и остеопонтин — также участвуют в минерализации. ЩФ служит маркером остеобластов, и чем больше ее активность, тем выше остеогенная способность этих клеток. Р

оль ЩФ в процессе минерализации до конца не выяснена, однако при врожденной недостаточности ЩФ (гипофосфатазии) остеогенез нарушается. ЩФ при нейтральном pH способна гидролизовать неорганический пирофосфат — мощный ингибитор минерализации.

Возможно, что функция ЩФ в остеогенезе сводится к регуляции уровня пирофосфата. Процесс минерализации подавляют также макромолекулярные комплексы, например протеогликаны. При обызвествлении хряща минерализация начинается в мембранных внеклеточных везикулах.

Минерализация начинается с отложения брушита (СаНР04 х 2Н20). Затем появляется слабокристаллизованый гидроксиапатит с низким (около 1,2) молярным отношением кальция к фосфату. С возрастом степень кристаллизации и отношение кальция к фосфату увеличиваются. Включение анионов фтора снижает долю аморфного фосфата кальция и усиливает кристаллическую структуру.

Если внеклеточные концентрации кальция и фосфата ниже пороговых, то минерализации не происходит. Произведение растворимости для минерального вещества кости рассчитать очень трудно, так как его состав непостоянен, а растворимость зависит от других, пока неизвестных факторов внеклеточной жидкости. При избыточной концентрации кальция и фосфата во внеклеточной жидкости иногда наблюдается эктопическая минерализация.

При резорбции кости кальций и фосфат поступают во внеклеточную жидкость, а органический матрикс рассасывается. Для растворения минерального вещества необходима кислая среда, которая создается в ограниченном пространстве между остеокластом и поверхностью кости. ЩФ — фермент, выделяемый клетками кости во внеклеточную среду.

Стимуляция остеогенеза сопровождается увеличением в крови активности костного изофермента ЩФ, остеокальцина и С-концевого пептида проколлагена I типа. Маркеры костной резорбции в моче: гидроксипролин, гидроксилизин и его гликозиды, пиридинолин и дезоксипиридинолин.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *